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MEAPS: Modelling commuter flows 1

The gravity model used to distribute journeys between an origin and a destination poorly
represents the influence of distance on choices. Drawing on the ‘intervening opportunities’
model of Stouffer (1940) and the radiative model of Simini, González, Maritan, & Barabási
(2012), we construct an ergodic model of absorption with priority and saturation (MEAPS)
that makes it possible to construct these choices on clear and flexible microscopic foun-
dations. The model accommodates different formulations of stochastic processes that al-
low fundamental parameters to be estimated and interpreted. We validate the theoreti-
cal model on synthetic data, then in two associated documents (Parodi & Timbeau, 2024b,
2024a)We propose an estimate ofMEAPS and a detailed comparisonwith the gravitymodel
and its most common variants. We then use this modelling to construct a high-resolution
map of CO2 emissions in La Rochelle. 5435 words.

Maxime Parodi, maxime.parodi@sciencespo.fr

Xavier Timbeau, xavier.timbeau@sciencespo.fr

1Translation by Scotia Hille



Table of contents

1 Tobler does not imply gravity 5

2 Gravity modelling 8

3 MEAPS: Modèle Ergodique d’Absorption avec Priorité et Saturation 16

4 Hypothetical simulations 23

References 35

4



1 Tobler does not imply gravity

In the analysis of spatial phenomena, distance plays an important role. This is sometimes referred to
as Tobler’s principle:

Everything is related, but things that are close are more related than things that are far
away.

If we take the example of the geographical matching of jobs and residents, proximity to the workplace
is a critical factor, even if other factors come into play in the choice of a job: salary, skills, etc. The
role of distance in job choice is generally assessed using a gravity model. Few alternatives have been
studied in the literature, and the gravity model has become standard: an analytic tool that need not
be brought into question, allowing the focus to rest on other factors.

However, when we looked at the mobility of daily life on a fine spatial scale – the 200 metre square –
we came up against the limitations of the gravity model, particularly when it came to deciding on sce-
narios for the geographic redistribution of jobs. These limitations stem from the fact that the gravity
model reduces Tobler’s principle to a homogeneous measure of distance. Within the gravity model, it
is possible to significantly improve our understanding of a given territory’s spatial dynamics by shift-
ing from an analysis based on distance to one of transport times, calculated according to the different
possible modes. Evenmore precise, it is possible to move to a notion of the generalised cost of a jour-
ney, which takes into account different aspects of that journey (its monetary cost, comfort, reliability,
etc.). However, these improvements to the ‘metric’ – undeniable though they are – merely change the
input to the gravity model, without questioning it. Yet, this model suffers from a more fundamental
flaw: it overlooks what makes space unique by trying to reduce it to a one-dimensional variable; it
overlooks the fact that space is inhabited and that each place is also defined by its neighbourhood.

For example, the gravity model treats dense urban environments and rural areas in the same way.
You’d think, for example, that a half-hour car journey would be just as hard for a “gilet-jaune” (“yellow
vests”, referring to rural or suburban residents) as it is for a Parisian. However, this is clearly not
the case: people living in rural areas make a virtue of necessity and even end up appreciating these
long daily journeys, whereas people living in highly urbanised areas consider alternatives because
they have a wider range of options to satisfy their demands. The flaw in the gravity model is thus
not a simple matter of subjective relationships to journey times. More fundamentally, the fault lies in
the fact that this model does not see space; it does not see what the territory offers; it does not see
that in urban areas the array of opportunities (of jobs, services, etc.) is more compact and that this
changes the way relative distances and relative costs are treated. The consequence of this blindness
is that the supply in the area is treated as if it were homogeneous. Suppose, for example, that the
public authorities want to create an industrial estate offering new jobs. The gravity model would lead
us to believe that residents of rural areas, because they are so scattered, are usually too far from
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the new employment zone to be interested: in the trade-off between the usefulness of the job and
the cost of the journey, the latter quickly becomes so high that it seems preferable to give up the
job. However, the real trade-off is far from being so simplistic because, of course, an individual who
cannot find a job nearby will resign himself to travelling further to work than someone who lives near
a dynamic economic centre. Distance does not carry the same weight depending on the quantity of
opporutnities in the neighbourhood.

Faced with these anomalies linked to the gravity model, we propose to use another analogy: that of a
flow of particles passing through a material made up of heterogeneous absorption sites. If someone
is looking for a job in an area rich in jobs, the chance of finding one near their point of departure
will be high, as is the chance of a particle being rapidly absorbed when it is surrounded by absorbing
sites. Conversely, if jobs are not very dense where one lives, the distance one has to travel is likely
to be greater, like a particle crossing an area of vacuum. In fact, the chance of being absorbed does
not depend directly on the distance to the receiving site; it depends on the number of sites that are
crossed before it. Or, to put it another way, it depends on the rank of this site in the ranking of sites
from closest to furthest away. This analogy can already be found in Stouffer (1940) and Simini et al.
(2012). However, the models they have developed can still be improved, in particular by accounting
for the fact that absorption sites can have a limited capacity. The neighbourhood then plays a role
both in terms of jobs, which are more or less dense around a given residence location, and also in
terms of competitors for jobs, who are themselves more or less dense in that same area.

We therefore propose a model that takes account of absorption and saturation. It is stochastic in
nature and, using statistical physics reasoning, we can conjecture that the main predictions are sta-
tionary. We have called it the Ergodic Absorption and Saturation Model, or MEAPS for short.

This model also respects the principle that – all other things being equal – what is close plays a more
important role than what is far away. But instead of distance, we use rank within classed distances.
The differencemay seemminor, but it addresses the issue of spatial heterogeneity and the density of
the environments crossed. In the gravity model, there always comes a time when, to take yet another
example, the school is too far away and it’s no longer “worth” the cost. In the perspective initiated by
Stouffer, and applied here, the nearest school, of rank 1, remains useful regardless of how far away
it may be, precisely because it is the nearest. The remarkable series of documentaries entitled “Les
chemins de l’école” (“Paths to school”) underline perfectly that the nearest school is alwaysworthwhile,
even if schoolchildren have to walk several hours to get there.

This analogy allows us to consider the job-matching process as the result of a search procedure that
examines opportunities in the order of their proximity. Such a procedure makes it possible to spec-
ify behaviours that serve as a reference and as a null hypothesis for examining the data. Marginal
amendments to this search procedure could produce a better fit and be interpreted directly. For the
time being, we ignore all the other determinants of the match, such as salary, skills required or of-
fered, and sector of activity. We fit a reduced model to the distance argument based on rich data
from France’s mobility survey, concerning flows between communes of residence and communes of
employment. Under the assumption that all jobs differ only in their location, we achieve a much bet-
ter fit than the gravity model. More refined data – assuming it exists – could further improve the fit
by introducing wage or skill differentials, for example. Nevertheless, taking a more rigorous account
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of geography seems to us to be an essential first step, since it modifies the quality of the fit by at least
an order of magnitude.

The approach is therefore structural: it is a model, even a simple one, that defines the way in which
the data can be interpreted. The data without the model means little, the model without the data is
mere speculation; thus, following Kant’s injunction, we combine the one with the other to describe
reality.

This document describes the construction of the theoretical model. In it we develop our critique of
the gravity model section 2 , and develop the analogy of the radiative model section 3. The complete
model is not solvable in a closed form. We therefore outline an algorithm for simulating it. In a final
section, section 4 we analyse the main properties of the theoretical model on synthetic simulations,
i.e. generated from known processes. In the absence of demonstration, this allows us to give credi-
bility to the ergodicity property of the model, which conditions the possibility of simulating it.

In two other papers, we estimate the model on real data and make a detailed comparison with the
gravity model and its most common variants (Estimates at La Rochelle). We then use this modelling to
discuss the link between density and CO2 (Compact city). We are currently building a high-resolution
map of CO2 emissions in La Rochelle using a projection that incorporates frequency and pattern as-
sociation behaviour for different household categories.
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2 Gravity modelling

To model journeys between places of residence and places of employment, analyses typically rely on
the 4-stepmethod. (Dios Ortúzar &Willumsen, 2011; Patrick Bonnel, 2001). Thismethod involves first
determining the number of journeys originating from a place of residence and, second, the number
of journeys arriving in total at a place of work. These make up stage 1: trip generation. The second
stage consists of distributing these journeys between each origin-destination pair. This is the distri-
bution stage. The third stage is the modal choice stage, in which an appropriate mode of transport
is associated with each journey. Finally, the fourth stage of the model is the one that specifies the
journey and provides information about its precise characteristics, such as the route taken or the
changes in elevation traversed, which serves particularly to predict traffic and congestion. However,
this breakdown into steps is somewhat arbitrary and does not align with best practice for articulating
these 4 moments. For example, the number of journeys made depends on the possibilities opened
up by geography, which are defined by the precise characteristics of the journeys. Step 4 is therefore
necessary to understand step 1, and step 4 requires knowledge of modal choices to be useful for the
choices made in step 1. Step 2 is necessary to explore trip possibilities. There are many overlaps
between the stages, and the breakdown does not preclude going back and forth between the various
stages.

Themodel we develop here focuses on stage 2, that of the distribution of journeys between the differ-
ent origin-destination pairs, or residence-jobs. The gravity model is largely dominant in this second
stage to take into account the role of distance in the trade-off between different destinations.

In the first part we discuss the shortcomings of the gravity model section 2.1. We then present the
intervening opportunities model of Stouffer (1940) and the radiative model of Simini et al. (2012) and
Simini, Maritan, & Néda (2013). Both models use job ranking rather than pure distance section 2.2
based on an analogy that is more appropriate to the geographical scales we are considering (munic-
ipality, region) than that of gravitation. Finally, in line with these approaches, we develop a model
based on the following two ideas:

1. Individuals make their trade-offs not as a direct function of distance, but as a function of the
rank (in the order of distances) of the opportunities available to them. Another way of looking
at it is that the number of jobs available in a circle of given radius is a better metric than distance.

2. Each destination has a limited capacity, so we need to introduce a notion of saturation that
forces individuals to look elsewhere. In this way, we establish a basis for respecting the con-
straints at the margins (every individual has a job, every job is occupied by an individual) and
introduce the neighbourhood both at the destination and at the origin.

The final formulation is probabilistic andwe analyse some of its properties using synthetic simulations
(section 4), showing that we can quickly simulate a state that is independent of the initial conditions.
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2.1 The inadequacies of the gravity model

The gravity model develops an analogy with Isaac Newton’s model of universal gravitation, whose
successes in physics and mechanics are indisputable. This model is the cornerstone of the path dis-
tribution stage (Dios Ortúzar & Willumsen, 2011; Patrick Bonnel, 2001, p. 160; Sen & Smith, 1995). It
is also used in other fields, such as international trade and the analysis of epidemics, which we will
not discuss here.

2.1.1 The (mistaken) reasons for the success of the gravity model

Formally, the gravity model describes the strength of a relationship between two objects as a func-
tion of their respective distance and mass. By analogy, the gravity model consists here of evaluating
the number of professional-related trips between two locations by taking as the masses the number
of inhabitants at the point of departure and the number of jobs at the point of arrival and, as the
denominator, a function of 𝑓 increasing function of distance1. Thus, if we indicate the starting points
by 𝑖 and the end points by 𝑗 :

𝑇𝑖,𝑗 = 𝑁ℎ𝑎𝑏,𝑖 × 𝑁𝑒𝑚𝑝,𝑗
𝑓(𝑑𝑖,𝑗)

(2.1)

The first gravity models borrowed the function 𝑓 function from Newtonian physics (𝑓 = 𝑑2), but
other formulations have since been proposed. For example, the function 𝑓 = 𝑒𝑑/𝛿function is used
in the discrete choice models proposed by McFadden (McFadden, 1974 ; Ben-Akiva & Lerman, 2018).
By replacing distance with the notion of generalised transport cost, this functional form can be linked
to a choice model with a random utility model. It is also possible to adjust more complex functional
forms by adding parameters. The gravity model can thus more or less reproduce the distribution of
distances observed in mobility surveys.

Wilson (1967) proposed a reasoning based on entropy minimisation to provide a theoretical basis for
equation 2.1. He identifies the reference state as that which ismost frequent in a randomdistribution
of choices. Wilson (1967) then shows that, given the function 𝑓 , equation 2.1 in fact has the proposed
form, which is the product of inhabitants and jobs that must be in the numerator (and not a power
of one or the other, for example). Still, this does not provide a theoretical backing for the functional
form of 𝑓 . The parallel with physics is easy to draw: interaction defines the role of distance, and max-
imisation of entropy allows us to deduce that the macroscopic equation depends on the aggregate
masses, but does not allow us to say anything more about the nature of the interaction.

As Simini et al. (2012) notes, the theoretical and empirical foundations of the 𝑓 function are weak at
best. The multiplication of parameters to improve the fit often has no theoretical justification. In fact,
1The distance can be anymetric that distinguishes points in space. The Euclidean distance comes tomind, but themodel can also
be adapted to take into account distances through transport networks, including journey times to account for different speeds
by mode, by type of road used, by time of day, or to compare modes for which distance is of little significance (public transport,
because of waiting times and specific lanes). We can also consider a full cost (including both the time and monetary cost of
the mode of transport) or a generalised cost including the perceived comfort or safety associated with the mode of transport.
Following Koenig (1980), we can use logsum to take into account the variety of solutions for getting to a destination.
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it is often impossible to give anymeaning to the estimated parameters, which renders the adjustment
exercise opaque. The asymptotic behaviours also highlight inconsistencies: for example, because
the model is such that the number of jobs at the point of arrival tends towards infinity, it predicts an
infinite number of journeys, even though the number of residents at the point of departure is limited!
The gravity model can also be criticized for its deterministic nature, which inhibits it from explaining
the statistical fluctuations in the number of predicted journeys, as well as the likelihood of different
empirical cases.

Nevertheless, the strongest criticism of the gravity model comes from its fundamental properties and
the conclusions that can be drawn from them. The number of journeys between an origin (residence)
and a destination (employment) is based on a simple trade-off between distance and the number of
residents or jobs. Once again, the behaviour of the model at the limits is perplexing: a single job
at the origin should be infinitely preferred to a very large number of jobs a little further away. This
is entirely unrealistic, and we can already estimate that distance does not play such a direct role in
mobility behaviour. We can also see that, in the gravity model, the relative weight of a quasi-central
job in relation to the “masses” of distant jobs would vary widely depending on how close it is to the
origin, in an unrealistic manner.

As indicated by Stouffer (1940) , it is perhaps not so much the distance to jobs that is decisive as the
rank of these jobs in the order of distances. In the gravity model, there is a big difference between
the case where the second nearest job is 500 m away and the case where it is 1 km away. If we apply
the Newtonian model, we would have to believe, for example, that the attractiveness of the latter job
is divided by 4. Yet, who could believe that a 500 m difference would be such a significant factor in
a job search? The attractiveness of the job depends above all on the fact that it is the second job
available close to home. Empirically, there is little doubt that the gravity model performs poorly: it
fails to explain why, when the density of jobs is low around a resident, he or she will envisage longer
journeys to reach areas with a high density of jobs; yet this is a very common observation that should
be reflected in adequate modelling.

Simini et al. (2012) give a few examples for the United States of the difficulty of the gravity model
in reproducing observed behaviour by outlining a few regularities. Clearly, the gravity model only
predicts nearby destinations and completely ignores distant destinations. It seems impossible for
the functional form 𝑓(𝑑𝑖𝑗) to empirically account for both the number of short journeys and the
number of long-distance journeys with a model that functions across different spatial regions, given
that densities are distributed differently.

There are relatively few publications that systematically compare the gravity model with other formu-
lations that respect Tobler’s first law. Heanue & Pyers (1966) is one of the first attempts of this kind.
Recent work by (Commenges, 2016; Floch & Sillard, 2019; Lenormand, Bassolas, & Ramasco, 2016)
confirm what Masucci, Serras, Johansson, & Batty (2013) concluded after the initial publication of the
radiative model: that the extended gravity model has better explanatory power regarding to inter-
urban mobility flows, a constant which holds for various zones considered across several countries.
The usual extension of the gravity model is to write, where 𝑐, 𝛼, 𝛽 and 𝛿 are positive parameters:
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𝑇𝑖,𝑗 = 𝑐
𝑁𝛼

ℎ𝑎𝑏,𝑖 × 𝑁𝛽
𝑒𝑚𝑝,𝑗

𝑑𝛿
𝑖,𝑗

(2.2)

Estimated parameters𝛼 and𝛽 are usually less than 1, which relates to a problem raised by Simini et al.
(2013): in this form the gravitymodel is non-divisible. If we consider an area inwhich there areworkers
(origin) or jobs (destination) and we decide to separate it into two distinct areas 1 and 2, as close to
each other as possible, the flows 𝑇1 and 𝑇2 predicted by the estimated form of equation 2.2 are not
the sum of the flow that would be obtained from the two zones combined. This separation into sub-
areas might be performed to modify the spatial unit of aggregation (Modifiable Areal Unit Problem) or
to identify sub-populations (e.g. by sector, by household category) within the initial zone. This more
detailed description can be achieved with different flow behaviours (which justify the division), but
in the limited case where these populations cannot be distinguished, there is no reason to expect
different behaviours.

This property of separability at both origin anddestination is verified, however, for the radiativemodel.
As Simini et al. (2013) suggest, the parameters𝛼 and𝛽 of the gravity model can be explained through
the radiative model (see below). These parameters summarise the additional spatial information,
and depend on the joint spatial distribution of masses at origins and destinations. However, they are
highly dependent on the spatial structure, the unit division and the sub-perimeters considered. In
this sense, we return to Fotheringham (1983)’s analysis that the gravity model lacks essential spatial
information about neighbourhoods.

2.1.2 The problem of constraint at the margins

The gravity model can be made even more complex to fit the data better than it spontaneously does.
It then loses a clear link with the theoretical reflections linking it to the maximisation of entropy. (Wil-
son, 1967) or the discrete choice model. The adjustment of the model becomes a dummy exercise
which does not inspire great confidence, particularly in the analysis of the scenarios modelled. The
exercise consists of adding a “normalisation” step by incorporating corrective coefficients in the rows
and columns of the origin-destination matrix, which amounts to adding fixed effects to each of the
departure and arrival points. The formulation of the gravity model is then modified as follows:

𝑇𝑖,𝑗 = 𝑎𝑖 × 𝑏𝑗 ×
𝑁𝛼

ℎ𝑎𝑏,𝑖 × 𝑁𝛽
𝑒𝑚𝑝,𝑗

𝑓(𝑑𝑖,𝑗)
(2.3)

Determining the coefficients 𝑎𝑖 and 𝑏𝑗 coefficients poses a number of problems. These coefficients
must make it possible to respect the constraints at themargins: the sum of jobs for a row of residents
must be equal to the number of residents employed in the zone and the sum of residents employed
at a place of employment must, in column form, be equal to the number of jobs at that place. For 𝑎𝑖
(in noting that Σ𝑗𝑇𝑖𝑗 = 𝑁ℎ𝑎𝑏,𝑖 and Σ𝑖𝑇𝑖𝑗 = 𝑁𝑒𝑚𝑝,𝑗 :
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𝑎𝑖 = Σ𝑗𝑇𝑖,𝑗

Σ𝑗
𝑏𝑗×𝑁𝛼

ℎ𝑎𝑏,𝑖×𝑁𝛽
𝑒𝑚𝑝,𝑗

𝑓(𝑑𝑖,𝑗)

= 𝑁1−𝛼
ℎ𝑎𝑏

Σ𝑗
𝑏𝑗×𝑁𝛽

𝑒𝑚𝑝,𝑗
𝑓(𝑑𝑖,𝑗)

(2.4)

Σ𝑗𝑇𝑖,𝑗 is generally observed directly or estimated during the generation stage of 4-stage approaches.
It is the number of departures from the 𝑖 point and is proportional to the number of working people
residing in 𝑖. Likewise, we can produce for 𝑏𝑗 an expression symmetrical to that of 𝑎𝑖 , involving
Σ𝑖𝑇𝑖,𝑗 which is also observed or estimated beforehand. This is the number of journeys converging
on the arrival point 𝑗 which is proportional to the number of jobs in 𝑗.

𝑏𝑗 = Σ𝑖𝑇𝑖,𝑗

Σ𝑖
𝑎𝑖×𝑁𝛼

ℎ𝑎𝑏,𝑖×𝑁𝛽
𝑒𝑚𝑝,𝑗

𝑓(𝑑𝑖,𝑗)

= 𝑁1−𝛽
𝑒𝑚𝑝,𝑗

Σ𝑖
𝑎𝑖×𝑁𝛼

ℎ𝑎𝑏,𝑖
𝑓(𝑑𝑖,𝑗)

(2.5)

The value of 𝑎𝑖 for a given 𝑖 depends on the evaluation of all the 𝑏𝑗 and conversely the evaluation
of each 𝑏𝑗 depends on that of all the 𝑎𝑖. We can estimate these coefficients by successive iterations
and thus hope to reach a fixed point, eventually unique to a closemultiplicative constant. Algorithmic
solutions have therefore been proposed in the main textbooks. The application of such algorithms
(such as Furness’ Dios Ortúzar &Willumsen (2011), p. 192)modifies the result proposed by the expres-
sion of the equation 2.2 gravity model, at the risk of diverging from its logic and initial justifications.
Indeed, the 𝑎𝑖 and 𝑏𝑗 are modifiers of the masses of workers and jobs. To make the gravity model
work, you therefore have to ‘cheat’ on the masses. Furthermore, the multiplicity of solutions and the
choice made by the algorithm remain a blind spot in these methods.

The procedure for respecting the margins could have been formulated differently, for example by
using additive corrections instead of multiplicative corrections or a combination of additivity andmul-
tiplicativity. In any case, there is no guarantee of a single, understandable solution. In general, these
procedures can lead to multiple equilibria that the solution algorithm will select without any justifica-
tion whatsoever. Above all, however, each of these procedures lacks theoretical foundations. 𝑎𝑖 and
𝑏𝑗 are never more than “patches”; they do not correspond to any interpretable characteristic of the
geographical area studied.

Compliance with constraints at themargins is the global counterpart of the problem of local separabil-
ity. These two properties illustrate the inability of the simple gravitymodel to respect the fundamental
aspects of the problem at hand. The operational ‘plasticity’ of the gravity model means that it can be
applied to observations while respecting the observed constraints, while allowing us to believe that a
theoretical foundation continues to justify the operations. As a result, the gravity approach is widely
used in applied models (notably the Land Use Transport Interactionmodel) despite its major shortcom-
ings, perhaps for want of a better option. However, the gaps it produces with the datamakes it urgent
to move beyond this approach, which survives by becoming a black box.
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2.2 A first alternative: the radiative model

The radiative model is one of the few alternatives to the gravity model (Dios Ortúzar & Willumsen,
2011). It takes up the intuitions of Stouffer (1940) and the intervening opportunities model, which is
based on the following logic: a migrant plans to go to a distant place but finds opportunities along
the way. This distraction from their initial objective is the result of “intervening” opportunities encoun-
tered along the way. The difference with the gravity model is that it is not distance that determines
the destination, but the number of encounters. Distance and geographical structure continue to have
an indirect influence on the choice of destination, since a greater distance travelled by the migrant
corresponds to a greater chance of encountering opportunities. However, Stouffer’s initial model
suffers from a number of shortcomings2 and does not resolve the issues of capacity or compliance
with constraints on margins. Nevertheless, it does open up another perspective, where the role of
distance is mediated by the number of opportunities encountered, which elegantly addresses the
shortcomings of the gravity analogy.

Stouffer proposes another metric in place of simple spatial distance. It is linked to the notion of acces-
sibility3 i.e. the number of jobs (and more generally opportunities) to which an individual has access
for a given maximum travel time or distance. A job thus appears as “far” from an individual as there
are jobs closer to them. The gravity model assumes that individuals make a significant difference be-
tween a casewhere the second available job is 500maway and onewhere this job is 1 km away. In the
new perspective, however, there is no difference because it is the second job encountered. In other
words, distance is put into perspective by taking into account the environment that is crossed. The
richer the environment in terms of opportunities, the less necessary it is to travel far; conversely, the
more deserted the environment, the further you have to go. This model has had many applications,
notably in Chicago (Ruiter, 1967).

The Simini et al. (2012) proposal addresses some of the shortcomings of Stouffer (1940) by proposing
a model inspired by radiation physics. This describes the emission of particles and their absorption
by the medium through which they pass. The intuition is the same as that of Stouffer (1940): for
as long as a particle does not encounter an obstacle, it continues on its way. It only stops when it
encounters a site that can absorb it, according to a certain probability. The more obstacles there are
in the environment, the more likely the particle is to stop. In this model, the distribution of distances
travelled depends on the medium and the number of absorption sites encountered.

More precisely, in the radiation model, each particle – or individual – is drawn at random from a
probability distribution with a characteristic 𝑧. Each absorption point, which represents a possible
place of work, has a mass of employment 𝑛𝑖 and is assigned a characteristic 𝑧𝑖 which is random. The
possible locations are ordered by distance, as in Stouffer (1940)’s model, and the particle encounters
them in that order. The selection of 𝑧𝑖 is constructed by drawing 𝑛𝑖 number of 𝑧s in the probability
distribution and taking the maximum of these 𝑧. The greater the mass in 𝑖 the greater the 𝑧𝑚𝑎𝑥 will
be. The emitted particle is absorbed if its 𝑧 is smaller than 𝑧𝑖. To represent that the particle will be

2In particular, there are flaws in the formalisation, which is based on a series of approximations that are not always made explicit,
making the model difficult to manipulate.

3The notion of accessibility was likely introduced by Hansen (1959)
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emitted if it is not absorbed by its starting point, its own 𝑧 is drawn by the same method, i.e. the
maximum of 𝑚𝑖 draws where 𝑚𝑖 is the number of opportunities in 𝑖.
The main result of Simini et al. (2012) is particularly elegant. The average value (denoted ⟨𝑇𝑖,𝑗⟩)
of routes starting from 𝑖 and going to 𝑗 has an expression that does not depend on the probability
distribution of the 𝑧. It takes the following expression, where 𝑠𝑖,𝑗 = Σ𝑘∈(𝑖→𝑗)∗𝑛𝑘 is the sum of the
opportunities between 𝑖 (not included) and 𝑗 (not included):

⟨𝑇𝑖,𝑗⟩ = 𝑇𝑖 × 𝑚𝑖 × 𝑛𝑗
(𝑚𝑖 + 𝑠𝑖,𝑗) × (𝑚𝑖 + 𝑛𝑖 + 𝑠𝑖,𝑗)

(2.6)

Based on fairly simple general hypotheses, we obtain a formulation that is similar to that of the grav-
ity model, replacing distance by the accumulation of opportunities between two points, so long as
the opportunities are ranked in order of distance. This formulation affords as much respect to To-
bler’s first principle as does the gravity model, but it is based on explicit hypotheses and provides a
better representation of the phenomena already mentioned. A departure from a sparsely populated
area will require longer journeys in order to find an equivalent number of opportunities afforded by
shorter journeys in a densely populated area. In addition, there is no ad hoc “normalisation” stage
required and the model is probabilistic, which means that margins of error and empirical tests can
be produced.

Applications of the radiative model to a variety of data (commuting, telephone calls, migration, logis-
tics) produce path distributions that are closer to the data than the gravity model, challenging the
belief that the gravity model is a ‘good’ model, validated by the data.

Note that the Simini et al. (2012) model accepts the gravity model as a limited case, under certain as-
sumptions about job density. Indeed, when job density is uniform, the accumulation of opportunities
is proportional to surface area and the average number of journeys between 𝑖 and 𝑗 is a function of
1/𝑟4 (see also Ruiter (1967)). This limited case shows the (very particular) conditions under which the
gravity model can be valid. It also demonstrates that the functional form used in the gravity model
depends strongly on the distribution of the density of opportunities, i.e. the effects of the neighbour-
hood. This is one of the key elements missing from the gravity model.

Tip 1. Fotheringham’s competing opportunities model

The competing destinations model of Fotheringham (1983) leads to a criticism of the gravity
model close to our own. The argument is that the gravity model cannot distinguish between
different spatial configurations, except when it is constrained in rows (each individual occupies
one and only one job) or in rows and columns (each job is occupied by one and only one indi-
vidual). Fotheringham (1984) concludes that the usual estimation of the gravity model is biased
by an omitted variable that represents spatial structure. The competing destinations model is
based on an accessibility index (different from the onewewill employ) whichmeasures for each
individual and each destination 𝑗 how accessible it is to other individuals (𝑘 ≠ 𝑖) by the expres-
sion𝐴𝑖𝑗 = ∑𝑝≠𝑖,𝑗 𝑀𝑝/𝑑𝑝𝑗. This term introduces the spatial structure, because a destination
surrounded by individuals has a higher accessibility index. It follows from the interpretation of
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the constraint procedure of the gravity model. Added to the gravity model with a parameter (
𝑓𝑖𝑗 = 𝐼𝑖𝑀𝛽

𝑗 𝑑𝛿
𝑖𝑗𝐴𝜙

𝑖𝑗𝜇𝑖𝑗 where 𝐼𝑖 is the number of individuals at the origin, 𝑀𝑗 the attraction
of the destination, 𝑑𝑖𝑗 the distance between 𝑖 and 𝑗 and 𝜇𝑖𝑗 is noise) it allows the structure to
be introduced explicitly into the gravity model without involving it in a second step when the
single or double constraint is applied. Fotheringham interprets the parameter 𝜙 parameter as
indicating either agglomeration effects (𝜙 > 0) or competition effects between attraction sites
(𝜙 < 0). Note that this approach does not guarantee separability or compliance with row or
column constraints.
(Fik & Mulligan, 1990) integrate the model of intervening destinations to propose a richer ver-
sion that takes structure into account. Although our assessment concerning the shortcomings
of the gravity model is the same, and the analysis proposed by Fotheringham is particularly
enlightening in terms of the omitted variable bias, our proposal, in line with Simini et al. (2012),
differs from these in that it makes explicit the way in which spatial structure is taken into ac-
count, which also allows greater precision in the articulation of agglomeration, competition or
saturation issues.

There are still two flaws in Simini et al. (2012)‘s radiative model. The first is the counterpart of its
elegance: there are no parameters to adjust it, which limits the model’s ability to account for the
richness of the data. The elegant calculation of trip averages is only valid when the underlying process
perfectly follows the authors’ hypothesis. However, as much as we seek a basic model that is simple
and conceptually clear, we also want to be able to enrich the model with parameters that are given
sense in light of the richness of the data. The only proposal they make in this respect is to introduce
an 𝜀 to modify the weight of the starting point in the choice of routes. This is only a very partial
response to this challenge. In contrast, the gravity model and even more so the Fotheringhammodel
(see box) are richly endowed with parameters, which makes it possible to adjust them to the data; at
the risk, however, of a bias linked to the poor definition of themodel’s parameters, which can obscure
everything that has not been explained.

The second flaw is that themodel does not respect the constraints on themargins for destinations. In
equation 2.6 the term𝑇𝑖 term is used to adjust themodel to the number of departures from 𝑖. On the
other hand, there is no counterpart for calibrating on the destination 𝑗 and it is therefore not possible
for themodel to take account of a capacity constraint: under thismodel, a number of particles greater
than the number of jobs can be absorbed in 𝑗. In this case as well, the gravity model can overcome
this problem by applying constraint procedures, which could also be applied to the Simini et al. (2012)
model. Yet, again we lose the possibility of interpreting what this constraint procedure produces.
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3 MEAPS: Modèle Ergodique d’Absorption avec Priorité et
Saturation

We now propose an extended and reworked version of Stouffer (1940) ’s approach that addresses
our criticisms of Simini et al. (2012)’s model. In this section, we present the model in its simplest form
before proposing its most direct extensions. Synthetic simulations section 4 allow us to appreciate
the broad outlines of how this model works. We then discuss possible estimation procedures and the
development of measurements based on this model.

3.1 Ranking, destination choice and absorption

Our model considers 𝐼 individuals and 𝐽 jobs1 located in an area. These locations are fixed and
exogenous, which means that we are not interested in the problem of location choice. This is not
because this choice is not important, but rather that we are interested in the distribution of journeys
once the locations have been fixed. The idea is that to determine the choice of location, we need to
take into account what the distribution of paths, their length or their generalised cost tells us.

It is assumed that all locations are separate and that there is therefore only one individual or one
job per location (jobs and individuals can be in the same place). Each individual 𝑖 ranks the 𝐽 jobs
and examines them in this order. He has a probability 𝑝𝑎 of taking a job (all the jobs are similar and
have the same probability of being taken). As long as no jobs are taken, the individual continues his
search by moving on to the next closest job (from his starting point). The probability of taking the job
𝑗 is therefore equal to the probability of not taking the nearest jobs multiplied by the probability of
taking the next nearest job: 𝑝𝑎 of holding the job 𝑗. Noting 𝑟𝑖(𝑗) the rank of the job 𝑗 in the ranking
of distances since 𝑖, we can write ̄𝐹 (𝑗) the probability of passing on the 𝑗𝑡ℎ element :

̄𝐹 (𝑗) = (1 − 𝑝𝑎)𝑟𝑖(𝑗) (3.1)

We also define the probability of fleeing the zone in question (“migration probability”). This is the
probability that an individual will not find one of the 𝐽 jobs that are suitable for them, so they give up
or look further afield. Assuming for the moment that this probability is the same for all individuals,
𝑝𝑓 we can determine 𝑝𝑎 :

𝑝𝑎 = 1 − (𝑝𝑓)1/𝐽 (3.2)

1In what follows, we look at the relationship between residents and employment, which suggests home-work mobility. This is
mainly to fix ideas, but the relationship between residents and any type of amenity can be approached in the same way. It is
also possible to classify residents according to observable characteristics and to index the model by these categories.
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The probability 𝑃𝑖(𝑗) of 𝑖 of stopping in 𝑗 is :

𝑃𝑖(𝑗) = (1 − 𝑝𝑎)𝑟𝑖(𝑗)−1 × 𝑝𝑎 = 𝑝𝑓
𝑟𝑖(𝑗)−1

𝐽 × (1 − 𝑝𝑓
1/𝐽) (3.3)

This expression therefore defines the probability of an individual 𝑖 to hold the job 𝑗 as a function
of the migration probability, the job rank and the total number of jobs. The rank of 𝑗 is simply the
number of cumulative opportunities from the starting point of 𝑖 to 𝑗 and replaces the distance, as
in the expressions of Stouffer (1940) or Simini et al. (2012). This number is none other than the
individual’s job accessibility 𝑖 in a circle of radius [𝑖𝑗] whether this radius is defined using a Euclidean
distance or othermeasures such as travel time. Note that it is assumed here that the jobs are identical
or, at least, perfectly fungible for the individual.

Each job has been assumed to be spatially distinct from the others. In the case where jobs are not
separated and could accumulate at a point or within a tile, the formalisation does not change - this is
the separability property mentioned above. The probability of stopping in the tile 𝑐𝑑 at a distance of
𝑑 from 𝑖 where there are 𝑘 jobs can be deduced from equation 3.1 since the 𝑘 jobs have successive
ranks. By noting 𝑠𝑖(𝑑) = ∑𝑗/𝑑𝑖,𝑗<𝑑 1 the accumulation (i.e. the accessibility) of all the jobs that are

at a distance strictly less than that of the tile under consideration for 𝑖 (and therefore excluding 𝑘 jobs
on the tile 𝑐𝑑), we have :

𝑃𝑖(𝑖 ∈ 𝑐𝑑) = 𝑝𝑓
𝑠𝑖(𝑑)/𝐽 × (1 − 𝑝𝑓

𝑘/𝐽) (3.4)

By taking a limited expansion of this expression to the 1st order (under the hypothesis that 𝑘 is small

compared with the total number of opportunities 𝐽 ) we obtain, noting 𝜇 = −𝑙𝑜𝑔(𝑝𝑓)
𝐽 :

𝑃𝑖(𝑖 ∈ 𝑐𝑑) ≈ 𝑘 × 𝜇 × 𝑒−𝜇×𝑠𝑖(𝑑) (3.5)

This expression clearly reveals the core of the model. The proportion of jobs selected by 𝑖 in the tile
is a function of the jobs in the tile multiplied by the accessibility of 𝑖 to that tile.

When the density of jobs is constant on a plane, 𝑠𝑖(𝑑) is proportional to the area and the model
becomes a function of distance with a term in 𝑒−𝑟2/𝜌2

. Here again, the behaviour of ourmodel, under
this very specific condition of a homogeneous distribution of opportunities, is similar to that proposed
for a gravity model, when the latter is specified with a distance function in 𝑒𝑟/𝜌. The preferred form of
the gravity model would be justified for a homogeneous distribution of opportunities along a straight
line2. This result differs from that of Simini et al. (2012), who found asymptotic behaviour in 1/𝑟4.

As in the Simini et al. (2012) model, the result is parameter-free, because the probability of migration
is entirely determined by the row-based constraint (the individual 𝑖 has an expectation equal to 1−𝑝𝑓
to find a job in the zone under consideration).
2The literature on international trade makes extensive use of the gravity model, including some very rich developments. The
problem of international trade is a little different from that of the analysis of trip distributions because we observe bilateral
flows of distinct products repeatedly between countries. We therefore have a large amount of information to link together
using the gravity representation. The transport question is different in that the distance between origin and destination is well
known, but the bilateral routes are not. On the other hand, we do have information on the distribution of journeys according
to distance, purpose and mode.
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3.2 Saturation and priority

We still have to take into account the column constraint, i.e. the fact that each job can be filled once
and only once. Instead of an ad hoc adjustment without theoretical backing, we propose the following
job-filling mechanism: each individual 𝑖 is ranked in order of priority. The first-ranked individual is
confronted with all the jobs and we calculate his or her probability of taking a job 𝑗 using the previous
formula (equation 3.3). The jobs are then partially filled in proportion to these probabilities3. The
second individual is treated in the same way, and so on, until one or more jobs are completely filled
(when the sum of the probabilities just exceeds 1). These jobs are then removed from the list of
possible choices and the assignment continues for the next individuals on the reduced list. Each time
an individual is added, other jobs may be removed from the search list.

At the end of this process, all individuals have jobs (at 𝑝𝑓 nearly) and all jobs are filled as soon as
we impose 𝐼 × (1 − 𝑝𝑓) = 𝐽 . This allocation with priority is Pareto-optimal. It is not possible
to increase the satisfaction of one individual without reducing that of another. At each stage, each
individual makes his choices without any constraint other than the possible saturation caused by his
predecessors. To increase his satisfaction, i.e. to allow him to occupy (in probability) a job better
classified for him, it would be necessary to degrade the situation of a predecessor by allocating a job
further away for him. This assignment procedure favours those at the top of the ranking, but takes
account of individual choices.

Formally, we note 𝜙𝑢(𝑖, 𝑗) the probability of availability (𝜙 is 0 if the job is completely taken) of the
job 𝑗 for a given order of priority 𝑢 at the time the individual 𝑖 has to choose. The probability of this
individual 𝑖 of taking the job 𝑗 can then be written as :

𝑃𝑢,𝑖(𝑗) = 𝜆𝑢,𝑖.𝜙𝑢(𝑖, 𝑗).𝑝𝑎

𝑟𝑖(𝑗)−1
∏
𝑙=1

(1 − 𝜆𝑢,𝑖.𝜙𝑢(𝑖, 𝑟−1(𝑙)).𝑝𝑎) (3.6)

This expression is complicated by the need to go through the jobs in the order that corresponds to
each individual. The probability 𝑝𝑎 must then be calculated so that the migration probability of 𝑖
remains unchanged. It is assumed that the remaining jobs remain perfectly fungible throughout the
assignment process. The probability of each is therefore identical and adjusted by a multiplicative
factor 𝜆𝑢,𝑖. The term 𝜆𝑢,𝑖 term thus derives from the potential unavailability of jobs. When a job is
unavailable, the individual 𝑖 when it is his turn to choose, knows his potential targets. He therefore
adjusts his probability of absorption so as to respect the probability of migration. This is how we
respect the row-based constraint, which is expressed by equation 3.7 below. This means that an
individual is made more likely to accept a job if there are few choices left.

Another solution would be to consider that the probability of migration is not preserved and that
unavailability results in higher rates of flight from the zone. More complex solutions are also possible.
For the time being, we will confine ourselves to the simple case where all individuals have the same

3In all rigour, probabilities do not add up so simply and an exact treatment would require taking into account probabilities con-
ditional on whether or not a particular job had been taken previously. The procedure described here is a simplification, substi-
tuting expectations for conditional probabilities.
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chance of working in the zone under consideration.4. Under this assumption of conservation of the
migration probability, we have :

∀𝑖,
𝐽

∏
𝑗=1

(1 − 𝜆𝑢,𝑖 × 𝜙𝑢(𝑖, 𝑗) × 𝑝𝑎) = 𝑝𝑓 (3.7)

The solution to this equation is that of a polynomial in 𝜆𝑢,𝑖 of high order. There may be several
solutions, but it is necessary that𝜆𝑢,𝑖×𝑝𝑎 ∈]0; 1[which reduces the number of admissible solutions.
For any 𝑖 we can produce an approximate solution by a development limited to order 1 by taking the
𝑙𝑜𝑔 of equation 3.7 :

𝑝𝑎 × 𝜆𝑢,𝑖 = −𝑙𝑜𝑔(𝑝𝑓)
∑𝐽

𝑗=1 𝜙𝑢(𝑖, 𝑗)
(3.8)

We can check that 0 < 𝜆𝑢,𝑖 × 𝑝𝑎 < 1 when 𝐽 is large enough and the number of jobs remaining
remains high (in probability) compared to −𝑙𝑜𝑔(𝑝𝑓).

3.3 Ergodicity

Each order of priority 𝑢 defines a possible path for allocating jobs to residents (or vice versa). In each
case, we end up with a possible state of the resident-job pairing, from which we deduce trips taken
for the purpose of work. Of course, the final result depends on the order of priority chosen. To avoid
this, the usual strategy in statistical physics is to repeat the procedure for all the possible orders of
priority and to consider the average of the results obtained across the 𝐼! possible orders of priority.
The ergodic assumption here is that this average over all these orders of priority is close to the steady
state of work-related trips in the area under consideration.

The first quantity that we average over the orders𝑢 is the availability variable𝜙𝑢(𝑖, 𝑗) of employment
𝑗 for the resident 𝑖. This average ⟨𝜙⟩𝑢(𝑛, 𝑗) corresponds to the probability of the job being available
𝑗 for any resident after 𝑛 residents already have a job or have left the area. This variable does not
depend on 𝑖 but only on the number of residents already positioned.

A second variable will be useful. This is the average accessibility to available jobs. It can be noted
that 𝐴𝑛(𝑖, 𝑘) the total number of jobs that remain available for 𝑖 when 𝑛 residents have already
positioned themselves, counting jobs from the nearest 𝑖 to 𝑘𝑡ℎ nearest. The figure we are interested
in is the average over all the 𝑛 possibilities, i.e. :

⟨𝐴⟩𝑛(𝑖, 𝑘) = ⟨ ∑
𝑗,𝑟𝑖(𝑗)≤𝑘

⟨𝜙⟩𝑢(𝑛, 𝑗)⟩𝑛 (3.9)

4In practice, to avoid side effects, you need to choose an employment zone that is larger than the resident zone.
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The special feature of this accessibility is that as jobs are taken (when 𝑛 increases), accessibility is
reduced, since it only considers the share of nearby jobs that remain available.

As before, we consider that the probability of an individual leaving the zone is a constant. In this case,
the probability of absorptionwill increase asmore jobs are taken: the fewer jobs that remain available,
themore a resident is prepared to accept those that remain. The probability𝑃𝑎 will therefore depend
on 𝑛 and can be written as 𝑃𝑎,𝑛.

For a given 𝑛, we have :

𝑃𝑓 =
𝐽

∏
𝑘=1

(1 − 𝑃𝑎,𝑛 × ⟨𝜙⟩𝑢(𝑛, 𝑟−1
𝑖 (𝑘)) (3.10)

Passing through 𝑙𝑜𝑔 and performing a limited expansion, we obtain :

𝑙𝑜𝑔(𝑃𝑓) = −𝑃𝑎,𝑛 ×
𝐽

∑
𝑘=1

⟨𝜙⟩𝑢(𝑛, 𝑟𝑖(𝑘)) = −𝑃𝑎,𝑛 × (𝐽 − (1 − 𝑃𝑓) × 𝑛) (3.11)

We now have all the information we need to calculate the probability 𝑃𝑛(𝑖, 𝑗) of resident 𝑖 taking job
𝑗 after𝑛 residents have already positioned themselves (cf. equation 3.3). By switching to 𝑙𝑜𝑔 we have
:

𝑙𝑜𝑔(𝑃𝑛(𝑖, 𝑗)) = 𝑙𝑜𝑔(𝑃𝑎,𝑛) + 𝑙𝑜𝑔(⟨𝜙⟩𝑢(𝑛, 𝑗)) +
𝑟−1

𝑖 (𝑗)
∑
𝑘=1

𝑙𝑜𝑔(1 − 𝑃𝑎,𝑛 × ⟨𝜙⟩𝑢(𝑛, 𝑟𝑖(𝑘)) (3.12)

By performing a limited expansion of the last term and then averaging over the 𝑛 we get :

𝑙𝑜𝑔(𝑃𝑖𝑗) ≈ ⟨𝑙𝑜𝑔(𝑃𝑎,𝑛)⟩𝑛 + ⟨⟨𝜙⟩𝑢(𝑛, 𝑗)⟩𝑛 + ⟨𝐴⟩𝑛(𝑖, 𝑟𝑖(𝑗)) (3.13)

The probability 𝑃𝑖𝑗 can thus be written from the average probability of absorption, the likelihood
that the job 𝑗 is available and the average accessibility. Conceptually, this is perfectly satisfactory
and understandable. Nevertheless, these quantities cannot be calculated directly; simulations are
required.

3.4 Heterogeneity of migration and absorption

So far we have considered the case where individuals and jobs are perfectly fungible. This simplifies
the model and allows an explicit resolution. However, it is possible to make the model more complex
by introducing interpretable parameters that allow better prediction and extraction of information
from the data.

20



Firstly, the migration parameter can be specific to each municipality of residents or each type of res-
ident. For example, the census allows us to measure the proportion of individuals, by municipality,
who have a job more than 100km from their home. This proportion is low (≤ 5% for a region like the
one studied in the La Rochelle application (Parodi & Timbeau, 2024b)) but can vary from one town to
another for a variety of reasons: not all towns are equally well-connected by transport; some are on
the outskirts of the study area; the average characteristics of residents vary fromone town to another,
etc. The model can easily take into account a probability of migration 𝑝𝑓,𝑖 for each individual.

Secondly, the absorption parameter has until now been identical for all jobs and all individuals. It
can now be made job-dependent, 𝑝𝑎,𝑗 In this way, we can highlight the attractiveness of a particular
employment zone. The census provides us with some information on commuting between munic-
ipalities and, therefore, on the differential attractiveness of neighboring municipalities. Other data
could inform us at the sub-municipal level. We might also want to make the probability of absorption
dependent on observable job characteristics. Overall, beyond the agglomeration effect, which is al-
ready accounted for, jobs in a dense employment zone may be more attractive than isolated jobs. In
this case, absorption depends on observed characteristics 𝑋 and, by specifying the functional form
of 𝑝𝑎(𝑋), can be estimated in such a way as to better reproduce the given data on the distribution
of trips.

Themodel presented is sufficiently flexible to allow us to account formore complex phenomena, so as
to simultaneously exploit rich data andmodel behaviours (migration, absorption) that seem logical. If,
instead of matching individuals and jobs, we looked at the case of school choice, we can imagine that
the absorption rate of the nearest school is high, while those in later ranks become quickly intenable.
If the individual is indifferent to the characteristics of the schools, apart from their location, he will
choose the nearest school. In the case that the first school is refused, it may be explained by an
unobservable parental requirement, which results in a greater distance travelled. Nevertheless, the
basic model, accounting for a drop in absorption beyond the first rank, is likely to be quite good5. It is
also possible to increase or decrease the absorption of certain resident-school pairs, which is a way
of introducing information on school mapping, for example.

We can therefore modify the absorption probabilities by giving a particular group of individual-job
pairs a greater or lesser chance of being absorbed. Bymodifying the groups that partition the pairs of
individuals× jobs, we can increase or reduce the number of degrees of freedom in the system. When
only the probability of absorption is a parameter, the number of degrees of freedom is reduced by 1
and the parameter 𝑝 is determined by the condition of equality between the number of jobs filled and
the number of individuals. If we have information on the probability of migration per individual or per
group of individuals, the number of degrees of freedom can be increased by an migration probability
differentiated according to these groups. The number of degrees of freedom can be further increased
by crossing a probability of absorption by groups of jobs and groups of individuals. The choice of
specification will depend on what we want to achieve and the problem under consideration. In the
estimation at La Rochelle, we see an application using a large number of degrees of freedom in order
to adjust the model on detailed data (providing an observation of commuting flows for pairs of town

5In more general terms, we can specify any law for the probability of absorption, which must verify that ∑𝑘=1,𝐽 𝑝𝑖,𝑟𝑖(𝑘) =
𝑝𝑓,𝑖 for all 𝑖. Any parameterisation of this probability distribution can then be simulated and fitted to the data. If the param-
eters have a theoretical interpretation, they can be identified.

21

larochelle.qmd


Working paper n°2023-15

of residence × town of employment). We also show a parsimonious determination of the correction
coefficients so as to extract relevant information from the data on flows between towns and to be
able to compare the predictive power of MEAPS to that of a gravity model, with an equal number of
degrees of freedom.

By indexing the migration probabilities 𝑝𝑓,𝑖 by 𝑖 and the correction coefficients 𝜆𝑖,𝑗 by 𝑖, 𝑗, the main
equations of the model become :

𝑃𝑖,𝑢(𝑗) = 𝜆𝑖,𝑗.𝑝𝑎

𝑟𝑢(𝑖)(𝑗)−1

∏
𝑙=1

[1 − 𝜆𝑖,𝑟𝑢(𝑖)(𝑙).𝑝𝑎.𝜙𝑢(𝑖, 𝑟−1
𝑢(𝑖)(𝑙))] (3.14)

𝐽
∏
𝑙=1

[1 − 𝜆𝑖,𝑟𝑢(𝑖)(𝑙).𝑝𝑎.𝜙𝑢(𝑖, 𝑟−1
𝑢(𝑖)(𝑙))] = 𝑝𝑓,𝑖 (3.15)

It is not possible to give a reduced form of this expression. However, it can be calculated numerically
for each 𝑢, 𝑖 and 𝑗 as a function of themodel assumptions (𝑝𝑓,𝑖, 𝑝𝑎,𝑗the spatial structure of residents
and jobs) and serves as the basis for the calculation algorithm used in the simulations presented in
the section 4 section6.

The model built in this way is flexible, since it is possible to specify migration processes (row-based
constraint equivalent to the 2.4 constraint) and absorption processes that respect the job saturation
constraint (row-based constraint equivalent to the 2.5 constraint) by the priority process described in
section 3.2. By going through all the possible permutations, we can avoid having a particular order
of priority and define an average solution to the process. When the problem is analysed with a finite
grid (or a grid smaller than the number of 𝐽 opportunities), we can predict an ergodic behaviour of
the average quantities predicted by the model. This explicitly solves the constraint problem at the
margins of the gravity model or the radiative model.

To study some of the properties of the model, we propose here to explore its behaviour using syn-
thetic data. The synthetic data, generated explicitly, allow us to control parameter variations in order
to isolate their consequences. These simulations do not claim to be exhaustive or demonstrative,
but can be used to support our intuitions. The entire section on synthetic simulations is executable
in the sense of Lasser (2020). The codes needed to reproduce these simulations and the associated
graphics are available at github.com/xtimbeau/meaps and are freely executable.

6This expression is implemented in the package R{rmeaps} package, available in the github repository
github.com/maxime2506/rmeaps and installed in R by devtools::install_github("maxime2506/rmeaps"). It is useful to
have a compiler that implements OpenMP, which requires a few manipulations on MacOS. The implementation is done in
C++/opemmp and relies on parallelization to handle the traversal of priority orders.
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4 Hypothetical simulations

4.1 Three centres: city and satellites

We construct an abstract territory made up of a “city” and two “peripheries” (figure 4.1). This arbi-
trary configuration allows us to evaluate MEAPS by simulating journeys and their distribution. Each
individual and each job are located separately from each other, which makes it possible to calculate
Euclidean distances between each inhabitant and each job and to deduce an unambiguous ranking
of jobs for each inhabitant according to their distance. All jobs are considered to be fungible, and
it is assumed that there is an identical 10% probability of escape (migration) for all individuals. The
distances between the centres are given in table 4.1 (in any unit).

Table 4.1. Distance between centres, for jobs (e) and residents (h)

e1 e2 e3

h1 0.00 0.75 0.75
h2 0.75 0.00 1.50
h3 0.75 1.50 0.00

To ensure equivalence between job demand and supply, 4,500 jobs are drawn at random. The three
job centres have the same centres as the residential centres, but are more closely distributed than
the residential centres. As shown on the figure 4.1, the job centres are located respectively near the
same centres as the residential areas. The peripheral centres contain fewer jobs (15% each) than the
city centre (70% of total employment), reflecting the usual structure whereby the peripheral centres
primarily contain jobs related to services provided to residents (such as shops or schools), while the
central activity zone contains a wider range of jobs, in greater numbers. We make no distinction in
terms of the productivity or qualifications required for jobs. This assumption simplifies the simulation
of the model, but nothing prevents us from distinguishing between categories of jobs and categories
of inhabitants, or from introducing elements of choice between distance and type of job. In this case,
we do not consider the choice of location and interpret all such choices as exogenous.

In the statistical analysis that follows, we will proceed with a spatial aggregation by dividing the plane
where the jobs and inhabitants are located into adjacent hexagons. This corresponds to an empirical
analysis in which location data is crunched.

The figure 4.2 simulates MEAPS using data from figure 4.1. For each resident hexagon, we obtain
an average value for the distance to their job. In the same way, we calculate the average distance
travelled to reach each job.
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Graph 4.1. Hypothetical territory with a town centre (h1) and two villages (h2) and (h3). The density
(5,000 inhabitants) is indicated in each hexagon. 4,500 jobs total, with 80% of jobs in the
town centre and 5% in the 2 villages (the remaining 10% are out of town). The density is
higher for jobs. Job densities are shown in the right-hand panel in orange.

This first figure shows how the MEAPS model works. A distribution of journeys can be generated (in
the small graphs of the figure 4.2). As the majority of jobs are located in the central hub, the average
distances for residents are lower there than in the other hubs. The model generates a little variance
within each centre. This is consistent with the idea that the most outlying residential hexagons gen-
erate greater distances. The distribution of average distances to employment is tighter than that
of average distances travelled per inhabitant. The averages of these two distributions are equal (by
design).

We can construct a table of flows between each centre (table 4.2). The first thing to note is that the
constraints at the margins are perfectly respected, which is the principle behind the construction
of MEAPS, the approximations made in the resolution algorithm thus remaining less than 10−5 at
least. Furthermore, the table of flows confirms the previous assessment. Most of the residents of
h1 (78%) move to g1 (the same centre). This “intra-cluster” employment rate is 42% for the other two
clusters. This is due to the imbalance in the location of jobs and is a desired property of the model.
It partly explains the distribution of job mobility distances for residents and also its ‘reciprocal’, when
calculating average distances to a hexagon of jobs.

Table 4.2. Flows between centres

e1 e2 e3 total

h1 2 481 335 334 3 150
h2 334 290 51 675
h3 334 50 290 675
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total 3 150 675 675 4 500

To assess the behaviour of the model, we can perform a thought experiment in which we move the
two satellite poles away from the centre (the distance between 1 and 2 or 3 increases from 0.7 to
1.2 in this experiment). The table 4.3 is obtained by simulating the model again on this alternative
geography. The result is identical to the previous configuration. This result is consistent with intuition
and is a desired property of the model. Since the ranking orders do not change (as long as the poles
are far enough apart and the configuration remains symmetrical), the ranks are not modified and
therefore the flows are unchanged. The distributions of distances (outgoing and incoming) are largely
modified, since 2 or 3 are further away from 1, as indicated by figure 4.3. We are tempted to conduct
further thought experiments to analyse the behaviour of themodel. The application Shiny application
available at ofce.shinyapps.io/rmeaps allows all these experiments to be carried out using the same
code as is used here.

Table 4.3. Flows between centers (distant centre 3)

e1 e2 e3 total

h1 2 482 334 334 3 150
h2 334 290 51 675
h3 334 51 291 675
total 3 150 675 675 4 500

4.2 Comparison with the gravity model

Comparing MEAPS with the gravity model allows us to understand its advantages. To do this, we
simulate a gravity model with two constraints equation 2.3, to allow calibration on the rows (each
individual has a job) and on the columns (each job is filled). This model is simulated at the disaggre-
gated level, i.e. at the level of each individual and each job based on the geographical configuration
described above in section 4.1. The gravitymodel is specified using the function𝑓 where 𝛿 is a positive
parameter :

𝑓(𝑑) = 𝑒𝑑/𝛿 (4.1)

This is a very common choice for modeling of trip flows. The gravity model can then be normalised
using the Furness algorithm (Dios Ortúzar & Willumsen, 2011), in which first the rows are normalised
(each individual has one job and one job only in probability, taking into account the migration param-
eter), then the columns (each job is completely filled). These normalisations are iterated in rows and
then in columns until a stable flow matrix is obtained. These normalisations follow the equation 2.4
and equation 2.5 normalisations.

25

https://ofce.shinyapps.io/rmeaps


Working paper n°2023-15

Graph 4.2. The panel on the left shows the average distances travelled by the inhabitants of a
hexagon. The small graph shows the density of journeys as a function of distance (green).
The right panel shows the average distances travelled to reach each job, as well as the
density of these journeys per distance in the graph (orange).

The gravity model adapted in this way is fitted to the MEAPS simulation, taking as a reference the
flows of table 4.2, constructed by aggregation over groups of inhabitants and jobs – in other words a
matrix of 3×3. The adjustment is made by calibrating the parameter 𝛿 so as to minimise the relative
Kullback-Leitner entropy of the aggregated distributions (this notion of entropy is described in detail
in the document Estimates at La Rochelle). The result of the estimation is proposed in table 4.4 and
corresponds to a value of 𝛿 ≈ 0.68.

Table 4.4. Gravity model for hypothetical configuration of reference

MEAPSMigration at 10% GravitaireAdjusted, δ = 0.68

e1 e2 e3 total e1 e2 e3 total

h1 2 481 335 334 3 150 h1 2 447 352 350 3 150
h2 334 290 51 675 h2 353 286 36 675
h3 334 50 290 675 h3 350 37 288 675
total 3 150 675 675 4 500 total 3 150 675 675 4 500

The adjustment of the gravity model gives a good result. One of the reasons for this good result is the
symmetry of the geographical configuration. The two satellites are at the same distance from the cen-
tral pole and the 𝑓 function, which depends only on distance, ensures that the flows are distributed
between each of the poles without too much difficulty. If we take a non-symmetrical configuration,
by moving one of the two satellites further away, with the other remaining in its place, we obtain a
different pattern, with the gravity model amplifying the asymmetries.
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Graph 4.3. The graph is constructed in the sameway as the previous one, with pole 3 0.5 (70% further
away) from pole 1.

Table 4.5. Gravity model with a distant satellite

MEAPSMigration at 10% GravitaireAdjusted, δ = 0.68

e1 e2 e3 total e1 e2 e3 total

h1 2 482 334 334 3 150 h1 2 581 285 284 3 150
h2 334 290 51 675 h2 286 367 22 675
h3 334 51 291 675 h3 284 23 369 675
total 3 150 675 675 4 500 total 3 150 675 675 4 500

The model MEAPS model maintains an identical configuration in the case of satellite centres that are
far from the centre, because the configuration remains symmetrical and no rank is changed. On the
other hand, the gravity model gives a very different response to that of the reference case: satel-
lite residents are more inclined to look for jobs in their respective satellites, and the flows between
satellite poles and the central pole are reduced. This property of the gravity model is expected: the
function 𝑓 function gives less weight to jobs that are further away. At the limit where this distance
becomes particularly great, the flows between satellite centres and the central centre will dry up al-
most entirely. The estimated parameter for the MEAPS simulation is of the order of 0.68 which is of
the order of magnitude of the radius of the central pole (0.5). For a distance of a few times 0.68 the
flux between poles will be almost zero. MEAPS’ result seemsmore appropriate to the situation we are
observing. When municipalities are satellites of a central hub at a distance of a few dozen kilometres,
there are flows towards this municipality to take up jobs, and the fact that the municipality is a few
kilometres further away does not drastically stop these flows. The sensitivity of distance is expected
to be low at this scale. We will see when we apply this to the La Rochelle area, using data describing
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Graph 4.4. Comparative densities of distances travelled per inhabitant between the reference sce-
nario and the ‘distant centre 3’ scenario. The dotted line is used for the alternative sce-
nario.

flows between the towns of residence and the towns of employment (taken from INSEE (2022)) that
MEAPS provides a better representation of reality than the gravity model.

If we re- estimate the parameter 𝛿 for the geographical configuration in which the satellite centres are
far apart, we end up with 𝛿 ≈ 0.95. This value is very different from the previous parameter, which
shows both the ‘plasticity’ of the gravity model and its unreliability, as if the ‘gravitational’ force could
change completely with each new datum (table 4.6).

Table 4.6. Readjusted gravity model with distant satellite

MEAPSMigration at 10% GravityReadjusted, δ = 0.95

e1 e2 e3 total e1 e2 e3 total

h1 2 482 334 334 3 150 h1 2 455 348 347 3 150
h2 334 290 51 675 h2 348 288 39 675
h3 334 51 291 675 h3 347 39 289 675
total 3 150 675 675 4 500 total 3 150 675 675 4 500
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4.3 Estimation procedure

It is possible to modify the weights of the absorption probabilities so as to adjust the table of rates of
flux. This is illustrated in the following table, where for each of the 9 possible pairs of residential area
(3) and employment area (3) the relative probability of absorption has been doubled, in succession.
The geographical configuration is that of the figure 4.1, with a centre and two satellites. The centre
contains more jobs than residents, forcing inflows into zone 1 as indicated in the table 4.2. This
constitutes a relative doubling of the probability, because the constraints of a constant probability of
migration and the saturation of jobs impose a reduction in the probability of absorption in other jobs,
a key feature of the algorithm which implements MEAPS.

The table 4.7 illustrates the variations in fluxes compared with a reference situation (that of the ta-
ble 4.2), rounded to the nearest integer. There are therefore 3 × 3 matrices 3 × 3. Each of the
sub-matrices indicates the flux variations for each origin-destination pair; there are 9 possibilities for
doubling the absorption probability, which constitute the rows and columns of the encompassing
matrix. Note that the sums of the columns and rows of each sub-matrix are zero, indicating that the
row and column constraints have been met.

Intuition would imply that the residential/employment zone pair, which is increased in relative proba-
bility, would experience higher flux. Indeed, this increase of flux is observed in the results, despite the
effects induced by compliance with the row and column constraints. To compensate for these higher
rates of flux, in the same column, i.e. for flows from other residential areas, there is a systematic de-
crease in fluxes from other residential areas. Symmetrically, an increase in flows from the residential
area 𝑖 to the employment zone 𝑗 always leads to a decrease in flows from 𝑖 to other employment
areas.

Table 4.7. Modification of the probability of absorption

e1 e2 e3

e1 e2 e3 e1 e2 e3 e1 e2 e3

h1 h1 76 −38 −38 −72 55 17 −72 17 55
h2 −38 27 11 81 −63 −18 −9 1 8
h3 −38 11 27 −9 8 1 81 −18 −63

h2 h1 −59 75 −15 75 −76 1 2 −26 24
h2 51 −58 7 −80 87 −7 7 −13 5
h3 9 −17 8 5 −11 7 −9 39 −30

h3 h1 −59 −15 75 2 24 −26 75 0 −76
h2 9 8 −17 −9 −30 39 5 7 −12
h3 51 7 −58 7 5 −12 −80 −7 87
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The table represents the gap between the resulting flows for a doubled probability of absorption, for
the residential zone i and the employment zone j, for each pair of residential/ employment zones.
The first matrice at top left indicates that the flow between residential zone 1 and employment zone
1 is increased by 76 when the probability of relative absorption is doubled. To compensate these
greater flows between zones 1 and 1, the flows between residential zone 2 and employment zone 1
are reduced by 38, which itself implies that those between 2 and 2 and between 2 and 3 are larger.

An interesting property of the table 4.7 matrices is that the nine matrices 3 × 3 form a vector space
1 of dimension 4. This is to be expected, as the constraints reduce the dimension by 9 (= 3 × 3) to 4,
since there are three constraints in each dimension (rows and columns) and one is redundant (if the
sums on each row are zero, then the sum of all the coefficients is zero and therefore if the sums on
two columns are zero, the third is necessarily zero). This indicates that, at least locally (in the vicinity of
the fluxmatrix calculated in table 4.2), it is possible tomodify the absorptional probabilities to achieve
any matrix of flows. To the nearest linear approximation, it is therefore possible to reproduce any
aggregate flow structure using a set of parameters that exactly saturate the dimension of this flow
structure. This property means that different estimation approaches can be imagined, depending on
the data available and the number of degrees of freedom we are prepared to commit to reproducing
the data.

The calculation time can be quite long due to the need to repeat a large number of draws, but the
following section (section 4.4) shows that this number can remain reasonable. An estimate of this
type is implemented by an iterative procedure in the document Estimates at La Rochelle document,
which reproduces MEAPS data using the INSEE (2022) job mobility survey with a calculation scheme
that can be easily implemented.

4.4 Ergodicity in practice

Using simulated data, it is straightforward to test the ergodicity hypothesis. This hypothesis conjec-
tures that themean values over𝑢 permutations are comparable to observations, ultimately repeated.
At this stage of hypothetical simulations we do not compare the model with observations (see Esti-
mates at La Rochelle), but we will show that estimating mean values does not require examination
of the 𝐼! possible permutations 2 and can be accomplished with spatial aggregation and a limited
number of permutation resamples.

To illustrate this property, we repeat the simulations of the model for several resamples of priority
(noted 𝑢 in the section 3.3 section), using a Monte-Carlo method. Taking the average over a sample
of 𝑢 we can construct an estimator of the mean values and show that with a sample size that is small
compared with 𝐼!, the means can be estimated reliably and in a reasonable time. This property will
be demonstrated on the particular geographical structure that we have simulated, although this does

1The eigenvalues of the 9 × 9 consisting of the nine column vectors of the nine “derived” matrices are (133.3, 97.3, -28.6, 22.0,
0, 0, 0, 0, 0). With 5 zero eigenvalues and 4 non-zero eigenvalues, we can conclude that the dimension of the vector space
generated by the nine matrices is 4.

2By Stirling’s formula 𝑙𝑜𝑔10(𝐼!) ≈ (𝑛 + 1/2)𝑙𝑜𝑔10𝑛 + 𝑙𝑜𝑔10
√

2 − 𝑛𝑙𝑜𝑔10𝑒 ≈ 5 × 105 for 𝐼 = 105 which makes a
large number.
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not allow us to generalise with certainty. There are undoubtedly aberrant spatial configurations that
contradict this conjecture.

The figure 4.5 illustrates the stochastic processes at work in the model and their resolution by av-
eraging over the possible resamples. The model is applied by randomly drawing permutations of
different priority between residents. For several residential hexagons (randomly selected), we then
identify the total set of destination choices (grouped within the hexagons). The grid already performs
an averaging operation, since each individual in each hexagon has a different order of priority. We
then represent the quantities of jobs (the probability of choosing a job in the destination hexagon).
The white lines illustrate the dependence on the priority draw. But after a few draws, these probabil-
ities converge on average. To simulate the model, it is not necessary (in all likelihood) to go through
the entire universe of permutations.

The table 4.8 indicates confidence intervals of 90% that can be constructed from the previous simula-
tions. Satisfactory stability is achieved, even though the aggregate flows are stochastic. For a hundred
or so runs, we can obtain an accuracy of more than 10−3.

Table 4.8. flux between centres, confidence intervals

e1 e2 e3

h1 2481[2472; 2490]ε≈0.1% 335[330; 340]ε≈0.5% 334[329; 339]ε≈0.5%
h2 334[327; 342]ε≈0.6% 290[284; 295]ε≈0.6% 51[49; 53]ε≈2%
h3 334[327; 341]ε≈0.6% 50[49; 52]ε≈2% 290[286; 295]ε≈0.5%

Source: MEAPS, interval at 95%, 1024 draws

The saturation and priority diagram is illustrated by figure 4.6 below. For each destination square (a
job), we represent the average rank (left) and its standard deviation (right) at the time of saturation.
The stochastic nature results from the random drawing of the order of each individual (the starting
squares). For most jobs, the mean ergodic saturation rank is reached very quickly. The white lines
are rapidly horizontal, indicating rapid convergence of the mean rank as the draws accumulate. This
graph confirms that, with a few exceptions, the state of the system is stable after a few draws. The
right-hand panel illustrates the standard deviation observed on the cumulative draws. This illustrates
the stochastic nature of the model induced by the draws.

4.5 Localised tension by job

The average rank at the time of saturation is information that can be used to construct a localised
tension indicator as shown on figure 4.7. The tension indicator provides information that is distinct
from average distance or population or job density. The most strained jobs are found on the axis
linking the centres. Jobs located on the periphery of the central hub have a level of tension close to
(but slightly higher than) those located in the satellites on the edge closest to the central hub. These
factors can be used to identify relevant areas for employment development.
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Experimentation in the application Shiny application makes it possible to study various properties
of the tension indicator, in particular when overall tension is high (fewer jobs than residents) or low
(excess of jobs over residents). In the casewhere there is an excess of jobs over residents, it is possible
to observe local tension on certain jobs.

4.6 Synthetic simulation in Shiny

The application shiny rmeaps application can be used to generate hypothetical geographies and sim-
ulate the MEAPS model on these distributions. Most of the graphs in this chapter can be reproduced
in this way. The application allows you to choose the size of the simulation (𝑛 the number of workers
and 𝑘 the number of jobs). By choosingmore jobs than workers, we introduce a problemwhere there
is an excess of jobs and therefore no migration constraint. In the opposite case, there is migration,
calculated so that the number of working people remaining in the area is equal to the number of
jobs.

Various parameters can be used to specify the geography, i.e. the relative position of the poles or
their size. The simulator uses Monte Carlo to simulate several orders of passage and displays the
corresponding graphs as convergence progresses, accumulating the average of the different variables
in the model. This feature makes it easy to visualise the ergodicity property mentioned above.
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Graph 4.5. Each white line represents for a given pair of starting square and destination square (all
finishing squares are represented by a line, for a random selection of 4 starting squares),
the probability of taking the job in the destination square as a function of the randomdraw.
The green lines represent this same probability averaged over the cumulative draws. The
y-axis scale is logarithmic.
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Graph 4.6. Each white line represents the average rank (left panel) and the standard deviation of the
rank (right panel) for a destination square (all destination squares are represented by a
line).

Graph 4.7. Localized relative tension indicator equal to the saturation rank normalized to 100% (0%
for the last saturated job, 100% for the earliest saturated job, averaged over each employ-
ment hexagon).
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